This paper concerns the optimal design and comparative analysis of resonant and non-resonant high-frequency GaN-based rotating transformers. A multi-physical design approach is employed, in which magnetic, electrical, and thermal models are coupled. The results are verified by experiments. Two different optimization objectives are considered; firstly, the efficiency of two standard core geometries is maximized for a required output power level. Secondly, a geometrical optimization is performed, such that the core inertia is minimized for the desired output power level. The results of both design optimizations have shown large improvements in terms of output power and core inertia as a result of applying series–series resonant compensation.
This paper concerns the design of a high-frequency GaN-based rotating transformer confined by conductive materials. The design approach combines the high-order spectral element method for the magnetic modeling, an electronic circuit model, and the finite element method for the thermal modeling. The objective of the design analysis is to minimize the ratio of core inertia to efficiency. Two different transformer topologies are considered, in which the power is either transferred in the axial or radial direction. The resulting designs are compared in terms of efficiency, core inertia, and transferred power. The radial design shows the best performance within the optimization problem.
This paper concerns the modeling of eddy current losses in conductive materials in the vicinity of a high-frequency transformer; more specifically, in two-dimensional problems where a high ratio between the object dimensions and the skin-depth exists. The analysis is performed using the Spectral Element Method (SEM), where high order Legendre–Gauss–Lobatto polynomials are applied to increase the accuracy of the results with respect to the Finite Element Method (FEM). A convergence analysis is performed on a two-dimensional benchmark system, for both the SEM and FEM. The benchmark system consists of a high-frequency transformer confined by a conductive cylinder and is free of complex geometrical shapes. Two different objectives are investigated. First, the discretizations at which the relative error with respect to a reference solution is minimized are compared. Second, the discretizations at which the trade-off between computational effort and accuracy is optimized are compared. The results indicated that by applying the SEM to the two-dimensional benchmark system, a higher accuracy per degree of freedom and significantly lower computation time are obtained with respect to the FEM. Therefore, the SEM is proven to be particularly useful for this type of problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.