The dynamics of superfluid 4 He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a Dynamic Many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles. Liquid4 He is the prime example of a strongly correlated quantum many-body system. It has been studied for decades and still offers surprises that lead to new insights. Understanding the helium fluids, due to their generic nature, lies at the core of understanding other strongly correlated many-particle systems, and is therefore of interest not only for the quantum fluids community. The description of the elementary excitations of superfluid 4 He in terms of phonon-roton quasiparticles is a cornerstone of modern physics, with profound implications in condensed matter physics, particle physics and cosmology. The empirical dispersion relation of these excitations proposed by Landau [1, 2] to explain thermodynamic data found support in the microscopic theory of Feynman and Cohen [3], initiating a fruitful development of the field theoretical description of correlated quantum particles.From an experimental point of view, neutron scattering techniques allowed the direct observation of very sharp excitations in superfluid 4 He at low temperatures. The density fluctuations displayed, as predicted, a continuous phonon-maxon-roton dispersion curve: a linear phonon part at low wave vectors followed by a maximum ("maxon") and then a pronounced "roton" minimum at a finite wave vector of atomic dimensions. Phonons naturally arise as the Goldstone mode associated with the continuous symmetry of the interacting system, whereas rotons are a direct consequence of strong correlations. Roton-like excitations have been proposed in cold atomic gases [4], in one-dimensional 4 He [5] and in two-dimensional fermionic systems [6]. Superfluidity emerges phenomenologically as a natural consequence of the dynamics, while the knowledge of the dispersion relation allows the calculation of low temperature thermodynamic properties of superfluid 4 He [7]. The relation between theory and experiment, however, is not straightforward [8,9]. The excitations considered by Landau, Feynman and others correspond to the singleparticle response function associated with the description of an effective vacuum -the superfluid ground stateand non-interacting quasiparticle excitations. Neutron scattering, in turn, gives access to the dynamic structure factor S(Q, ω), a quantity related to the dynamic susceptibility, i.e., the linear response ...
The recent discovery of a charge order in underdoped YBa2Cu3Oy raised the question of the interplay between superconductivity and this competing phase. Understanding the normal state of high-temperature superconductors is now an essential step towards the description of the pairing mechanism in those materials and determining the upper critical field is therefore of fundamental importance. We present here a calorimetric determination of the field–temperature phase diagram in underdoped YBa2Cu3Oy single crystals. We show that the specific heat saturates in high magnetic fields. This saturation is consistent with a normal state without any significant superconducting contribution and a total Sommerfeld coefficient γN∼6.5±1.5 mJ mol−1 K−2 putting strong constraints on the theoretical models for the Fermi surface reconstruction.
The dynamic structure function S(k, ω) informs about the dispersion and damping of excitations. We have recently (Beauvois et al. in Phys Rev B 97:184520, 2018) compared experimental results for S(k, ω) from high-precision neutron scattering experiments and theoretical results using the "dynamic many-body theory" (DMBT), showing excellent agreement over the whole experimentally accessible pressure regime. This paper focuses on the specific aspect of the propagation of low-energy phonons. We report calculations of the phonon mean-free path and phonon lifetime in liquid 4 He as a function of wavelength and pressure. Historically, the question was of interest for experiments of quantum evaporation. More recently, there is interest in the potential use of 4 He as a detector for low-energy dark matter (Schulz and Zurek in Phys Rev Lett 117:121302/1, 2016). While the mean-free path of long wavelength phonons is large, phonons of intermediate energy can have a short mean-free path of the order of µm. Comparison of different levels of theory indicates that reliable predictions of the phonon mean-free path can be made only by using the most advanced many-body method available, namely DMBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.