X-ray spectra following radiative recombination of free electrons with bare uranium ions (U92+) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 degree observation geometry, allowed us to determine the ground-state Lamb shift in hydrogenlike uranium (U91+) from the observed x-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime.
We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogenlike 140 Pr 59+ and 142 Pm 60+ ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.
Isotope shifts in dielectronic recombination spectra were studied for Li-like A Nd 57+ ions with A=142 and A=150. From the displacement of resonance positions energy shifts δE 142,150 (2s − 2p 1/2 ) = 40.2(3)(6) meV ((stat)(sys)) and δE 142,150 (2s − 2p 3/2 ) = 42.3(12)(20) meV of 2s − 2p j transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of 142,150 δ r 2 = -1.36(1)(3) fm 2 . The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.