Artemis (Adams‐based Rover Terramechanics and Mobility Interaction Simulator) is a software tool developed to simulate rigid‐wheel planetary rover traverses across natural terrain surfaces. It is based on mechanically realistic rover models and the use of classical terramechanics expressions to model spatially variable wheel‐soil and wheel‐bedrock properties. Artemis's capabilities and limitations for the Mars Exploration Rovers (Spirit and Opportunity) were explored using single‐wheel laboratory‐based tests, rover field tests at the Jet Propulsion Laboratory Mars Yard, and tests on bedrock and dune sand surfaces in the Mojave Desert. Artemis was then used to provide physical insight into the high soil sinkage and slippage encountered by Opportunity while crossing an aeolian ripple on the Meridiani plains and high motor currents encountered while driving on a tilted bedrock surface at Cape York on the rim of Endeavour Crater. Artemis will continue to evolve and is intended to be used on a continuing basis as a tool to help evaluate mobility issues over candidate Opportunity and the Mars Science Laboratory Curiosity rover drive paths, in addition to retrieval of terrain properties by the iterative registration of model and actual drive results.
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
In 1997 and 2004, small wheeled robots (“rovers”) landed on the surface of Mars to conduct scientific experiments focused on understanding the planet’s climate history, surface geology, and potential for past or present life. Recently, the Mars Exploration Rover (MER) “Spirit” became deeply embedded in regolith at a site called Troy, ending its mission as a mobile science platform. The difficulty faced in navigating mobile robots over sloped, rocky, and deformable terrain has highlighted the importance of developing accurate simulation tools for use in a predictive mobility modeling capacity. These simulation tools require accurate knowledge of terrain model parameters. This paper describes a terramechanics-based tool for simulation of rover mobility. It also describes ongoing work toward estimation of terrain parameters of Mars soil.
To support scientific visualization of multiple-mission data from Mars, the Virtual Astronaut (VA) creates an interactive virtual 3D environment built on the Unity3D Game Engine. A prototype study was conducted based on orbital and Opportunity Rover data covering Santa Maria Crater in Meridiani Planum on Mars. The VA at Santa Maria provides dynamic visual representations of the imaging, compositional, and mineralogical information. The VA lets one navigate through the scene and provides geomorphic and geologic contexts for the rover operations. User interactions include in-situ observations visualization, feature measurement, and an animation control of rover drives. This paper covers our approach and implementation of the VA system. A brief summary of the prototype system functions and user feedback is also covered. Based on external review and comments by the science community, the prototype at Santa Maria has proven the VA to be an effective tool for virtual geovisual analysis
Several space applications would benefit from on-demand, distributed, local measurements; examples include measuring variation in magnetic fields around a spacecraft, visual inspection of a spacecraft exterior for signs of damage, rapid mapping of a small asteroid, or in-flight calibration of a communications beam pattern. Such measurements cannot be achieved using conventional spacecraft architectures and technologies. However, improvements in miniaturization and autonomy enable new methods to meet this need. One such concept is an extremely small inspector spacecraft: this vehicle is released from the parent spacecraft, autonomously maneuvers in the region near the parent, performs the required measurements, relays the data, and then re-docks until further measurements are needed. Navigation is accomplished by low-impulse gas thrusters and image-based attitude and position determination. Total mass of the inspector, dock and control electronics is on the order of 5 kg. This paper presents the inspection concept and its mission architecture, based on the Bandit inspector spacecraft under development at Washington University. Two applications will be examined: visual inspection of the parent spacecraft exterior and measurement of the parent spacecraft's beam pattern. The functional and technological challenges against successful inspection will be discussed, and, where available, proposed solutions will be provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.