The intention of this study is to give an idea about the influence of water-spray cooling on the solidification process of the liquid metal which enables to locate the shear region. The effect of spray heat transfer coefficient (hspray) during the liquid-to-solid transition through the cooled zone temperature and the metal latent heat of solidification are highlighted. A gray iron continuous casting process subjected to water-sprays cooling was simulated using the commercial code COMSOL MULTIPHYSICS 5.2. The obtained results show the great influence of hspray on the location of transition region as well as the relationship between hspray, wall outer temperature, latent heat dissipation, and the solidification time.
Ordinary water spray cooling is connected with very high temperatures where heat transfer during evaporation plays a key role. However, during cooling without phase change, the behaviour of the spray cooling parameters is rarely considered. The purpose of this paper is to study the influence of spray hydrodynamic parameters on heat transfer without liquid phase change during the cooling of an aluminium 3003-H18 plate at a temperature of 92 °C. First of all, the flow rate was varied from 0.497 up to 1 l/min. Then, the inlet pressure varied from 0.7 to 2.1 bars. The influence of nozzle-to-target distance is also tested since the simulations were carried out in a wide height range, from 100 mm to 505 mm. The present simulation was achieved using the version 5.2 of COMSOL Multiphysics code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.