A robust unknown input observer for a nonlinear system whose nonlinear function satisfies the Lipschitz condition is designed based on linear matrix inequality approach. Both noise and uncertainties are taken into account in deriving the observer. A component fault detection and isolation scheme based on these observers is proposed. The effectiveness of the observer and the fault diagnosis scheme is shown by applying them for component fault diagnosis of an electrohydraulic actuator.
Thriving automation in industries leads to more research on the tool condition monitoring systems for better accuracy and fast recognition/evaluation of tool wear. Research on the applicability of the new advances in the soft-computing as well as in the signal processing fields is the inevitable consequence. In this work, a new soft-computing modeling technique, fuzzy radial basis function (FRBF) network has been applied to the prediction of drill wear using the vibration signal features. This work presents the wear prediction performance comparison of this new model with three other already tried and established soft-computing models, such as back propagation neural network (BPNN), radial basis function network (RBF) and normalized radial basis function network (NRBF), for both time-domain as well as wavelet packet approaches of feature extraction. Experimental results show that FRBF model with wavelet packet approach produces the best performance of predicting flank wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.