Li 10 GeP 2 S 12 (LGPS) solid electrolyte is not affordable due to the high cost of Ge metal, making it economically unviable despite being a lithium superionic conductor. The synthesis of such solid electrolytes is much more time-and energyconsuming and needs an inert environment. Here, we report Si (silicon)-based composition [Li 10 SiP 2 S 12 (LSiPS)] to make it cost-effective through microwave heating (MW). The total time for synthesis processes, including ball milling, heating rate, and heating dwell time, is ∼120 min, much less than the previous reports. We have also avoided vacuum sealing/Ar-purging to reduce the synthesis cost further. During MW heating, the densification process dominates over coarsening, resulting in a dense nanoflake morphology with a finer crystallite size. The synthesized LSiPS has a high fraction (∼89%) of more conducting tetragonal phase as identified by NMR analysis. Further, we modified the interface between the Li anode and LSiPS by forming a lithiophobic and lithiophilic kind of gradient interlayer to reduce the reduction of LSiPS and suppress the side reactions. The interface modification resulted in a better Li/LSiPS/Li cyclic performance for 1800 h at 0.2 mA/cm 2 and 500 h at 1.0 mA/cm 2 . All-solid-state lithium-metal batteries (ASSLIB) have been developed against a high-voltage cathode (LCMO-coated LCO) and showed an excellent cycling performance with a reversible capacity of ∼110 mAh/g after 300 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.