9-beta-D-Arabinofuranosyladenine 5'-triphosphate (ara-ATP) is an inhibitor both of DNA polymerase-alpha and -beta from noninfected rabbit kidney cells and of the DNA-dependent DNA polymerase induced by herpes simplex virus Type 1 (strain IES). The studies were performed with partially purified enzymes, and each of the different polymerase preparations contained only one DNA-dependent DNA polymerase species. These enzymes were inhibited in a competitive manner. The HSV-induced DNA-dependent DNA polymerase was 39-fold more sensitive to ara-ATP than was cellular DNA polymerase-beta and 116-fold more sensitive than cellular DNA polymerase-alpha. The affinity of the HSV-induced enzyme for ara-ATP was only slightly influenced by the use of different template/initiators in the enzyme assays. In intact cell systems DNA synthesis was affected by 9-beta-D-arabinofuranosyladenine (ara-A) as indicated by the reduced incorporation of deoxythymidine. In herpesvirus-(strain Lennette)-infected cells, however, ara-A shows no influence on the incorporation on deoxythymidine into cellular DNA, but it substantially reduces the incorporation into viral DNA. Ara-A itself is incorporated into both cellular and herpesviral (strain Lennette, D-316 and IES) DNA during DNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.