Bean golden mosaic virus (BGMV) is transmitted by the whitefly Bemisia tabaci in a persistent, circulative manner, causing the golden mosaic of common bean (Phaseolus vulgaris L.). The characteristic symptoms are yellow-green mosaic of leaves, stunted growth, or distorted pods. The disease is the largest constraint to bean production in Latin America and causes severe yield losses (40 to 100%). Here, we explored the concept of using an RNA interference construct to silence the sequence region of the AC1 viral gene and generate highly resistant transgenic common bean plants. Eighteen transgenic common bean lines were obtained with an intron-hairpin construction to induce post-transcriptional gene silencing against the AC1 gene. One line (named 5.1) presented high resistance (approximately 93% of the plants were free of symptoms) upon inoculation at high pressure (more than 300 viruliferous whiteflies per plant during the whole plant life cycle) and at a very early stage of plant development. Transgene-specific small interfering RNAs were detected in both inoculated and non-inoculated transgenic plants. A semiquantitative polymerase chain reaction analysis revealed the presence of viral DNA in transgenic plants exposed to viruliferous whiteflies for a period of 6 days. However, when insects were removed, no virus DNA could be detected after an additional period of 6 days.
White y (Bemisia tabaci) is a polyphagous insect that causes huge damage in several horticultural crops, including tomato, by sucking nutrients from the phloem and transmitting viruses. White ies are particularly di cult to manage and the use of chemicals remains the common practice, which causes the development of insecticidal resistance. Thus, there is considerable interest in the introduction of white y resistance by classical and molecular breeding. Here, we explored the concept of using an RNA interference construct to silence a v-ATPase gene in white ies interacting with transgenic tomato plants that express siRNA molecules corresponding to a fragment from the B. tabaci vATPase. PCR analyses revealed the presence of both ΔATPase and nptII transgenes in all transgenic lines. siRNA expressing lines were challenged against white y and revealed a mortality rate of 57.1% in transgenic line 4.4.1, while in the control the mortality was 7.6%. Mortality of 2nd instar nymphs was higher on the transgenic plants and the development of 3rd instar nymphs was slightly longer than on the control plants. Although the attraction of insects was not signi cantly different between treatments, the number of eggs laid by the insects on the transgenic plants was signi cantly lower, compared to the controls. RT-qPCR revealed a decreased expression level of endogenous v-ATPase gene in white ies feeding on transgenic plants. No unexpected effect was observed on the non-target insects Myzus persicae or Tuta absoluta. Results presented here may form the foundation for the generation of elite tomato varieties resistant to white y, a devastating insect pest.
Whitefly (Bemisia tabaci) is a polyphagous insect that causes huge damage in several horticultural crops, including tomato, by sucking nutrients from the phloem and transmitting viruses. Whiteflies are particularly difficult to manage and the use of chemicals remains the common practice, which causes the development of insecticidal resistance. Thus, there is considerable interest in the introduction of whitefly resistance by classical and molecular breeding. Here, we explored the concept of using an RNA interference construct to silence a v-ATPase gene in whiteflies interacting with transgenic tomato plants that express siRNA molecules corresponding to a fragment from the B. tabaci vATPase. PCR analyses revealed the presence of both ΔATPase and nptII transgenes in all transgenic lines. siRNA expressing lines were challenged against whitefly and revealed a mortality rate of 57.1% in transgenic line 4.4.1, while in the control the mortality was 7.6%. Mortality of 2nd instar nymphs was higher on the transgenic plants and the development of 3rd instar nymphs was slightly longer than on the control plants. Although the attraction of insects was not significantly different between treatments, the number of eggs laid by the insects on the transgenic plants was significantly lower, compared to the controls. RT-qPCR revealed a decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. No unexpected effect was observed on the non-target insects Myzus persicae or Tuta absoluta. Results presented here may form the foundation for the generation of elite tomato varieties resistant to whitefly, a devastating insect pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.