A computer simulation is used to investigate the relationship between skin impedance and image artefacts in electrical impedance tomography. Sets of electrode impedance are generated with a pseudo-random distribution and used to introduce errors in boundary voltage measurements. To simplify the analysis, the non-idealities in the current injection circuit are replaced by a fixed common-mode error term. The boundary voltages are reconstructed into images and inspected. Where the simulated skin impedance remains constant between measurements, large impedances (> 2k omega) do not cause significant degradation of the image. Where the skin impedances 'drift' between measurements, a drift of 5% from a starting impedance of 100 omega is sufficient to cause significant image distortion. If the skin impedances vary randomly between measurements, they have to be less than 10 omega to allow satisfactory images. Skin impedances are typically 100-200 omega at 50 kHz on unprepared skin. These values are sufficient to cause image distortion if they drift over time. It is concluded that the patient's skin should be abraded to reduce impedance, and measurements should be avoided in the first 10 min after electrode placement.
Electrical impedance tomography (EIT) is a novel medical imaging method, which allows reconstructed tomographic images of the internal impedance of a subject to be made with the use of a ring of electrodes. High precision impedance measurements are needed, because the image reconstruction process is ill-conditioned and small errors in measurement can lead to large errors in the final image. In practice, there are formidable instrumentation problems, due to the interaction of finite current drive output impedance, recording amplifier common mode rejection, and unequal skin-electrode impedances. A number of different EIT systems have been constructed or are under development. These employ differing strategies, such as additional electrodes, multiple electrode current injection, or recording at multiple frequencies, to improve image accuracy. This paper reviews the nature of the instrumentation problems and the designs employed by differing groups in attempting to overcome them.
Severe epileptics may require curative neurosurgery. Sometimes focus localization requires recording with electrodes inserted deep into the brain, which may cause death or permanent neurological damage. Since epileptic seizures are associated with marked changes in cerebral impedance, we propose that EIT with sub-dural electrodes (inserted between the brain and skull) could provide a superior and less dangerous method for the localization of epileptic foci. The purpose of these experiments was to determine whether EIT could be used to localize the origin of seizure activity. In terms of impedance characteristics, an appropriate model is cortical spreading depression in the animal brain. Six rabbits were anaesthetized and paralysed and the brain exposed. EIT images and DC potentials were recorded from an array of 16 electrodes on the brain during cortical spreading depression induced by DC stimulus. Cortical spreading depression could be localized by EIT with an accuracy of 8.7% +/- 6.4% (mean +/- SD) of electrode array diameter. The errors in localization appeared to be distributed randomly. In a phantom of similar geometry, the error was 5% after correction for a systematic component. Results are sufficiently encouraging that we intend to extend this study to human patients.
A novel algorithm for the reconstruction of dynamic images using diametric excitation has been developed. The algorithm is specifically designed to image impedance changes in the brain using boundary data obtained from scalp electrodes by incorporating a priori information. The a priori information is obtain by solving the forward problem using a finite-element model (FEM) which includes the discontinuity of the skull resistivity. The advantages with this new approach are that the sensitivity and accuracy of the location of the impedance changes are improved compared to methods based on adjacent excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.