1.2,2'-Dipyridyl disulphide (2-Py-S-S-2-Py) and n-propyl 2-pyridyl disulphide (propyl-S-S-2-Py) were used as two-protonic-state reactivity probes to investigate the active centre of papain (EC 3.4.22.2).2. The existence of a striking rate optimum at pH approx. 4 in the reaction of papain not only with the symmetrical probe but also with the unsymmetrical probe is shown to constitute compelling evidence that the thiolate ion component of the cysteine-25-histidine-159 interactive system of papain possesses appreciable nucleophilic character. It is not a necessary requirement that the probe reagent should engage the imidazolium ion of histidine-159 in hydrogen-bonding for the sulphur atom of the interactive system to display nucleophilic character. The single proton-binding site of propyl-S-S-2-Py cannot simultaneously interrupt the active-centre ion pair and provide for rate enhancement as the pH is lowered towards 4. The possible implication of this for the mechanism of papain-catalysed hydrolysis is discussed. 3. The suspected difference in the active centres of papain and ficin (EC 3.4.22.3), which could be a lack in ficin of a carboxy group conformationally equivalent to that of aspartic acid-158 of papain is confirmed. The reactivity of the papain thiol group towards both probe reagents is controlled by two ionizations with pKa close to 4 that are positively co-operative. 4. In the reaction of papain with 2-Py-S-S-2-Py. the reactivity appears to be controlled also by an addition ionization with pKa approx. 5. Possible origins of this additional ionization are discussed. K. The spectral and ionization characteristics of propyl-S-S-2-Py are reported. 6. The reagent reacts rapidly with thiol groups at the sulphur atom distal from the pyridyl ring to provide, at pH values below 9, stoicheiometric release of 2-thiopyridone. This property, together with the ability of the reagent markedly to increase its electrophilicity consequent on protonation, suggests alkyl-2-pyridyl disulphides in general as valuable two-protonic-state reactivity probes with exceptional specificity for thiol groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.