The effect of slightly lowered body temperature on endurance time and possibly related physiological factors was studied in seven male volunteers exercising on a cycle ergometer at an ambient temperature (Ta) of 18 degrees C. Work load was increased to 40% in a stepwise manner (phase I, min 0-16) followed by a period at 80% of peak oxygen consumption (VO2) sustained to exhaustion. On one day, exercise was preceded by a double cold exposure (precooling test, PRET), resulting in a 204-kJ/m2 negative heat storage and a 4 and 0.2 degrees C lower mean skin and core temperature at the start of exercise compared with the control test (CONT). Core temperature dropped further during exercise in PRET. Endurance time at 80% of peak VO2 was increased by 12% (P less than 0.05) in PRET. Heart rate (HR) was decreased throughout PRET (P less than 0.05); oxygen pulse and arteriovenous O2 difference were significantly increased in phase I of PRET, whereas the PRET-CONT differences in stroke volume and cardiac output were not significant. In phase II of PRET (min 16-28, heavy exercise) sweat rate (SR) and heat conductivity, indicating forearm blood flow, were lower (-39%, P less than 0.001; -37%). Pedal rate (PR) was 9% lower (P less than 0.01) in phase II of PRET. At the termination of exercise, PRET-CONT differences in HR, SR, and PR had disappeared.
In 10 women, external cold and heat exposures were performed both in the middle of luteal phase (L) and in the early follicular phase (F) of the menstrual cycle. Serum progesterone concentrations in L and F averaged 46.0 and 0.9 nmol X l-1, respectively. The experiments took place between 3:00 and 4:30 A.M., when the L-F core temperature difference is maximal. At neutral ambient temperature, esophageal (Tes), tympanic (Tty), rectal (Tre), and mean skin (Tsk) temperatures averaged 0.59 degrees C higher in L than in F. The thresholds for shivering, chest sweating, and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were increased in L by an average of 0.47 degrees C, related to mean body temperature [Tb(es) = 0.87Tes + 0.13 Tsk] and to Tes, Tty, Tre, or Tsk. The above-threshold chest sweat rate and cutaneous heat clearances at the thumb and forearm were also enhanced in L, when related to Tb(es) or time. The metabolic rate, arm blood flow, and heart rate at thermoneutral conditions were increased in L by 5.0%, 1.1 ml X 100 ml-1 X min-1, and 4.6 beats X min-1, respectively. The concomitant increase in threshold temperatures for all autonomic thermoregulatory responses in L supports the concept of a resetting of the set point underlying the basal body temperature elevation in L. The effects of the increased threshold temperatures are counteracted by enhanced heat loss responses.
Ten women [mean maximal O2 uptake (VO2max), 2.81 l X min-1] exercised for 15 min on a cycle ergometer in the middle of the luteal phase (L) and in the early follicular phase (F) of the menstrual cycle at the same constant work rates (mean 122 W) and an ambient temperature of 18 degrees C. Serum progesterone averaged 44.7 nmol X l-1 in L and 0.7 nmol X l-1 in F. After a 4-h resting period, exercise was performed between 3 and 4 A.M., when the L-F core temperature difference is maximal. Preexercise esophageal (Tes), tympanic (Tty), and rectal (Tre) temperatures averaged 0.6 degrees C higher in L. During exercise Tes, Tty, and Tre averaged 0.5 degrees C higher. The thresholds for chest sweating and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were elevated in L by an average of 0.47 degrees C, related to mean body temperature (Tb(es) = 0.87Tes + 0.13Tskin), Tes, Tty, or Tre. The above-threshold chest sweat rate and cutaneous heat clearances were also increased in L. The mean exercise heart rate was 170.0 beats X min-1 in L and 163.8 beats X min-1 in F. The mean exercise VO2 in L (2.21 l X min-1) was 5.2% higher than in F (2.10 l X min-1), the metabolic rate was increased in L by 5.6%, but the net efficiency was 5.3% lower. No significant L-F differences in the respiratory exchange ratio and postexercise plasma lactate were demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)
The effects of slightly below-normal body temperatures (delta Tcore-0.5 to 1 degree C) on exercise performance were examined in four series of studies employing a standardized precooling maneuver. In both the precooling tests and the control tests the subjects exercised on a cycle ergometer at an ambient temperature of 18 degrees C with the following results. In series 1, the subjects were exercising at a heart rate of 120 beats X min-1. Work rate and oxygen pulse were significantly increased, and sweat rate was less elevated in precooling tests than in controls. In series 2, in 12 well-trained rowers subjected to an incremental performance test, maximum work rate, peak VO2, time to exhaustion, and total work were not reduced in precooling tests. Eight well-trained rowers in series 3 were requested to work as hard as possible for 1 h. The mean work rate, VO2, and oxygen pulse were increased in the precooling tests by 6.8, 9.6, and 5.6%, respectively, whereas the sweat rate was 20% lower. In series 4 after a 16-min period of easy exercise (phase 1) the subjects exercised at a work rate corresponding to 80% VO2max up to exhaustion. Endurance time at this work rate was increased in precooling tests by 12% (18.5 vs. 20.8 min, p = 0.035). Heart rate was lower throughout the exercise period in precooling tests.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.