In this paper, we propose a method by which the entrepreneurial ecosystem, if present, reveals itself in the data. We first follow the literature and define the entrepreneurial ecosystem as a multidimensional set of interacting factors that moderate the effect of entrepreneurial activity on economic growth. The quality of such an ecosystem, by its multidimensionality, is impossible to measure directly. But so defined, we argue that variation in entrepreneurial ecosystem quality should result in variation in the estimated marginal effect of entrepreneurial activity on economic growth. Testing for such variation is possible using a combination of a multilevel growth regression and latent class analysis. We motivate and validate our approach in simulated data before illustrating its applicability in a data set covering 107 European NUTS1-2 regions across 16 EU member states. For this dataset, we cannot reject the hypothesis of a homogeneous contribution of entrepreneurship to regional growth. That is, in this dataset, we find
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.