The main aim of this paper is to investigate a subring of the ring of continuous functions on a topological space X with values in a linearly ordered field F equipped with its order topology, namely the ring of continuous functions with compact support. Unless X is compact, these rings are commutative rings without unity. However, unlike many other commutative rings without unity, these rings turn out to have some nice properties, essentially in determining the property of X being locally compact non-compact or the property of X being nowhere locally compact. Also, one can associate with these rings a topological space resembling the structure space of a commutative ring with unity, such that the classical Banach Stone Theorem can be generalized to the case when the range field is that of the reals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.