This experiment was conducted to evaluate if consumption of endophyte-infected fescue alters digital circulation in the distal thoracic limb of the horse and to assess if soundness of the hooves of horses is affected by consumption of endophyte-infected fescue. Twelve American Quarter Horses (mean initial BW 459 ± 31 kg), 6 mares and 6 geldings, were used in this 90-d study that comprised high-endophyte (E+) and low-endophyte (E-) treatment groups. Fescue seed was integrated into the E+ diet at a rate sufficient to bring total ergovaline to 200 μg/kg, and endophyte-free fescue seed was incorporated into the E- diet from d 0 to 90. From d 30 to 60, native prairie hay was replaced with high- or low-endophyte fescue hay, bringing total dietary ergovaline to 280 μg/kg (E+) and 18 μg/kg (E-). From d 61 to 90, fescue seed was ground to decrease particle size. On d 0, 30, 60, and 90, Doppler ultrasonography and thermographic imaging were used to measure the diam. of the medial palmar artery, velocity of blood flow, and surface temperature of the hoof as indicators of digital circulation. Lameness examinations were conducted on the same days. There were no consistent treatment differences observed when evaluating measurements of digital circulation. On d 60, horses in the E+ treatment group showed increased hoof sensitivity in the left limb (P = 0.02). These horses tended to have increased hoof sensitivity when both thoracic limbs were averaged (P = 0.06), and they demonstrated increased lameness during longeing (P = 0.08). Data indicated that mares may have increased digital circulation, regardless of treatment, compared with geldings (P ≤ 0.05). Heavier horses also had greater arterial diam., velocity of blood flow, and hoof temperature than lighter BW horses (P ≤ 0.05) on d 30, 60, and 90 at time points that ranged from 90 to 180 min after feeding. Although horses consuming the E+ diet demonstrated increased lameness, especially on d 60, compared with horses consuming the E- diet, the measures of digital circulation did not support the hypothesis that digital circulation was reduced. Because of observed lameness issues, limiting the access of horses to endophyte-infected fescue may be prudent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.