The equivalent external noise temperature of timevarying antennas is studied using the concept of cross-frequency effective aperture, which quantifies the intermodulation conversion of external noise across the frequency spectrum into a receiver's operational bandwidth. The theoretical tools for this approach are laid out following the classical method for describing external noise temperature of linear time-invariant antennas, with generalizations made along the way to capture the effects of time-varying components or materials. The results demonstrate the specific ways that a time-varying system's noise characteristics are dependent on its cross-frequency effective aperture and the broadband noise environment. The general theory is applied to several examples, including abstract models of hypothetical systems, antennas integrated with parametric amplification, and time-modulated arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.