Elucidating the phylogenetic relationships of the current but problematic Dasyatidae (Order Myliobatiformes) was the first priority of the current study. Here, we studied three molecular gene markers of 43 species (COI gene), 33 species (ND2 gene) and 34 species (RAG1 gene) of stingrays to draft out the phylogenetic tree of the order. Nine character states were identified and used to confirm the molecularly constructed phylogenetic trees. Eight or more clades (at different hierarchical level) were identified for COI, ND2 and RAG1 genes in the Myliobatiformes including four clades containing members of the present Dasyatidae, thus rendering the latter non-monophyletic. The uncorrected p-distance between these four ‘Dasytidae’ clades when compared to the distance between formally known families confirmed that these four clades should be elevated to four separate families. We suggest a revision of the present classification, retaining the Dasyatidae (Dasyatis and Taeniurops species) but adding three new families namely, Neotrygonidae (Neotrygon and Taeniura species), Himanturidae (Himantura species) and Pastinachidae (Pastinachus species). Our result indicated the need to further review the classification of Dasyatis microps. By resolving the non-monophyletic problem, the suite of nine character states enables the natural classification of the Myliobatiformes into at least thirteen families based on morphology.
Summary Length‐weight relationships of three sympatric species of stingrays from a coastal mudflat, Malaysia were estimated. A total of 290 individuals (150 Himantura walga, 78 Dasyatis bennetti, and 57 Dasyatis zugei) were sampled using barrier net, gill net and beam trawl. The length‐weight relationship based on disc length and width generally showed positive allometric growth (b > 3) for all species. This study reports the first findings regarding the length‐weight relationships of these stingray species in Malaysian waters.
Periodic fish ingressions into intertidal areas during high tide are known to occur on tropical mudflats. This study aimed to elucidate the feeding ground function of coastal mudflats for three common stingray species in the Klang Strait, Malaysia. Stingrays (disc width range from 5.65–54.50 cm) sampled over 17 months using a large barrier net (~2 ha enclosure) at two sampling sites were examined for their diet composition, prey frequency and prey volume according to predator species and maturity. The index of relative importance and Schoener's index of diet overlap were calculated. The three stingray species fed on relatively similar prey items which varied in size and contribution. Brevitrygon heterura fed on the widest range of prey taxa (28) whereas Hemitrygon bennetti (22) and Telatrygon biasa (17) showed higher prey specialization. The Penaeidae (dominantly Metapenaeus brevicornis and M. affinis) were the most important food item in the stingray diet which also included Actinopterygii, Amphipoda, Brachyura and Calanoida. The stingray diet showed an ontogenetic shift, with young stingrays tending to be generalists whereas the more mature stingrays (except H. bennetti) become more specialized in their feeding habits. This shift in feeding strategy reflects the diversity of prey taxa abundantly available to young stingrays on the mudflats, while the larger stingrays adapt to feed on larger prey once they enter deeper waters.
The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.
Previous examination of the mitochondrial NADH2 gene and morphological characteristics led to the resurrection of Scoliodon macrorhynchos as a second valid species in the genus, in addition to S. laticaudus. This study applied an integrated taxonomic approach to revisit the classification of the genus Scoliodon based on new materials from the Malaysian Peninsula, Malaysian Borneo and Eastern Bay of Bengal. Mitochondrial DNA data suggested the possibility of three species of Scoliodon in the Indo-West Pacific, while the nuclear DNA data showed partially concordant results with a monophyletic clade of S. macrorhynchos and paraphyletic clades of S. laticaudus and S. cf. laticaudus from the Malacca Strait. Morphological, meristic and dental characteristics overlapped between the three putative species. Collective molecular and morphological evidence suggested that the differences that exist among the non-sympatric species of Scoliodon are consistent with isolation by distance, and Scoliodon macrorhynchos remains as a valid species, while S. cf. laticaudus is assigned as S. laticaudus. The Malacca Strait acts as a spatial delineator in separating the Pacific S. macrorhynchos (including South China Sea) from the Northern Indian Ocean S. laticaudus. Future taxonomic work should focus on clarifying the taxonomic status of Scoliodon from the Indonesian waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.