Stainless steel 304L (SS304L) has been selected as the material for canisters for spent fuel storage from three nuclear power plants in Taiwan. A crucial issue is extending the spent fuel storage safety standards of the canisters. The anti-saline corrosion abilities of three thermal spray coatings (i.e., Al, ZnAl, and 625 Inconel alloys) on the SS304L were evaluated by immersion in 3.5 wt % aqueous NaCl and with 0.025 g/cm2 NaCl deposition at 80 °C and 80% relative humidity (RH) for 1000 h. The pristine thermal spray coatings were examined using the pull-off adhesion test to understand the adhesion strength, and Vickers hardness was measured for the mechanical properties of the three coatings. Confocal laser scanning microscopy (CLSM) was used to identify the porosities of the coatings. Furthermore, the surfaces of the specimens before and after corrosion were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The composition and distribution of the oxide layers formed on the coating surfaces during corrosion were evaluated. Electrochemical measurement was also performed with the polarization method to quantify the corrosion property of the three thermal spray coatings. The results showed that the corrosion rate of Al coating was lowest from the Tafel analysis after the 1000 h corrosion test in 3.5% aqueous NaCl. In contrast, the corrosion rate of Inconel 625 was lowest after 1000 h of the NaCl deposition corrosion test in a controlled environment. Therefore, the ZnAl thermal spray coating is a potential protection layer, keeping in mind economic considerations, of SS304L for anti-corrosion in saline environments.
Fe-Cr-Mn alloy is a common material used for the metallic interconnector of solid oxide electrolyte fuel cells (SOFC). However, its high temperature oxidation resistance needs to be strengthened to improve the performance of SOFC. In this study, the effect of trace additions of Ti, Mo, Co and La on the high-temperature behavior of Fe-Cr-Mn alloy was investigated. The composition of Fe-22Cr-2Mn-X (X = Ti, Mo, Co, La) alloys was designed to maintain a bcc structure with the aid of the thermal-calc software. These alloys tended to form Cr-rich oxide in the inner layer and Mn-rich oxide in the outer layer of the specimens after oxidative tests at 850°C, thus reducing the likelihood of chromium oxide evaporation. The experimental results indicated that the addition of Co and La produced better oxidation resistance at high temperatures than Ti and Mo. In addition, the influence of trace elements on electrical resistance of the interconnector material was examined as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.