Among 47 patients with stroke evaluated clinically and videofluoroscopically, one-half aspirated. Patients with combined cerebral-brainstem strokes with bilateral cranial nerve signs were at greatest risk, but aspiration also occurred in the context of unilateral signs. Dysphonia was the common clinical characteristic of aspirating patients. Single chest roentgenograms were of limited value in predicting aspiration. Outcome was favorable following compensatory oral feeding programs.
Background: Stroke rehabilitation often uses the motor relearning concept that require patients to perform active practice of skill-specific training and to receive feedback. Treadmill training augmented with real-time visualisation feedback and functional electrical stimulation may have a beneficial synergistic effect on motor recovery. This study aims to determine the feasibility of this kind of enhanced treadmill training for gait rehabilitation among patients after stroke. A system for dynamic visualisation of lower-limb movement based on 3-dimentional motion capture and a computer timed functional electrical stimulation system was developed. Participants received up to 20-min enhanced treadmill training instead of their over-ground gait training once or twice a week for 6 weeks at Coathill hospital, Lanarkshire, United Kingdom. Number of training sessions attended, and training duration were used to assess feasibility. Ankle kinematics in the sagittal plane of walking with and without functional electrical stimulation support of the pre-tibial muscles were also compared and used to confirm the functional electrical stimulation was triggered at the targeted time. Results: Six patients after stroke participated in the study. The majority of participants were male (5/6) with a age range from 30 to 84 years and 4/6 had left hemiplegia. All participants suffered from brain infarction and were at least 3 months after stroke. Number of training sessions attended ranged from 5 to 12. The duration of training sessions ranged from 11 to 20 min. No serious adverse events were reported. The computerised functional electrical stimulation to the pre-tibial muscles was able to reduce plantarflexion angle during the swing phase with statistical significance (p = 0.015 at 80%; p = 0.008 at 90 and 100% of the gait cycle). Conclusions: It is safe and feasible to use treadmill gait training augmented with real-time visual feedback and computer-controlled functional electrical stimulation with patients after stroke in routine clinical practice. Trial registration: NCT03348215. Registered
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.