En reprenant les travaux antérieurs de Nguyen-Hoe et ses collaborateurs sur la raie Lyman-α et en introduisant les effets de la structure interne de l’émetteur, les effets dus au champ de Lorentz (effet Stark motionnel) et les effets dus au mouvement de l’émetteur (effet Doppler), nous avons développé un modèle qui nous a permis d’obtenir des profils de raies comparables à ceux observés au bord du Tokamak Tore Supra. Dans cette région du bord de Tokamak, la température est relativement inférieure à celle du plasma du cœur. Donc l’hypothèse qui consiste à considérer que la vitesse de l’émetteur est purement thermique, et égale à (kBT/M)1/2, n’est plus valable dans ces conditions. Nous avons donc considéré, pour la première fois, que la vitesse des émetteurs est distribuée selon la distribution de Maxwell. Un meilleur accord global a été obtenu entre le spectre calculé et l’observation. Les profils de raies expérimentaux ont été modélisés à l’aide des profils théoriques en tenant compte des effets Doppler, Stark et Zeeman. Cette analyse montre qu’il est nécessaire de prendre en compte au moins deux populations d’atomes de deutérium distinctes. Notre modèle a permis donc le diagnostic des différentes populations de neutres de deutérium ainsi que la détermination simultanée de plusieurs paramètres du plasma.
In this work, we report some relativistic effects on the spectral line broadening. In particular, we give a new Doppler broadening in extra hot plasmas that takes into account the possible high velocity of the emitters. This suggests the use of an appropriate distribution of the velocities for the emitters. Indeed, the Juttner-Maxwell distribution of the velocities is more adequate for relativistic velocities of the emitters when the latter are in plasma with an extra high temperature. We find an asymmetry in the Doppler line shapes unlike the case of the traditional Doppler effect.
The high orders of Stark effects on spectral line shapes are examined in the ion-static and electron-impact approximations. At first the distribution functions of the spatial derivative of the ion microfield in He + plasma are calculated for different plasma conditions when the coupling parameter is weak. We present new results about the spatial derivative ion microfield distributions and apply them to show the asymmetry of the Lyman-α(Ly-α) line in He + plasma. At the second stage we show that asymmetry is affected by the spatial derivative tensor of the local ion electric field. We have used the Monte-Carlo simulation (MCS) to compute the distribution functions for all tensor components and use them to solve the evolution equation of emitter whose solution serves to compute and therefore to show the line shape asymmetry. Good agreement of our distribution functions of ion microfield gradients and the line asymmetry with other results are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.