This paper uncovers the fundamental relationship between total and partial computation in the form of an equivalence of certain categories. This equivalence involves on the one hand effectuses, which are categories for total computation, introduced by Jacobs for the study of quantum/effect logic. On the other hand, it involves what we call FinPACs with effects; they are finitely partially additive categories equipped with effect algebra structures, serving as categories for partial computation. It turns out that the Kleisli category of the lift monad (−) + 1 on an effectus is always a FinPAC with effects, and this construction gives rise to the equivalence. Additionally, state-and-effect triangles over FinPACs with effects are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.