1. Nitrogenase from the facultative anaerobe Klebsiella pneumoniae was resolved into two protein components resembling those obtained from other nitrogen-fixing bacteria. 2. Both proteins were purified to homogeneity as shown by the criteria of disc electrophoresis and ultracentrifugal analysis. 3. The larger component had a mol.wt. of 218000 and contained one Mo atom, 17Fe atoms and 17 acid-labile sulphide groups/mol; it contained two types of subunit, present in equal amounts, of mol.wts. 50000 and 60000. All the common amino acids were present, with a predominance of acidic residues. The apparent partial specific volume was 0.73; ultracentrifugal analysis gave s(0) (20,w)=11.0S and D(0) (20,w)=4.94x10(-7)cm(2)/s. The specific activities (nmol of product formed/min per mg of protein) when assayed with the second nitrogenase component were 1500 for H(2) evolution, 380 for N(2) reduction, 1200 for acetylene reduction and 5400 for ATP hydrolysis. The reduced protein showed electron-paramagnetic-resonance signals at g=4.3, 3.7 and 2.015; the Mössbauer spectrum of the reduced protein consisted of at least three doublets. The u.v. spectra of the oxidized and reduced proteins were identical. On oxidation the absorbance increased generally throughout the visible region and a shoulder at 430nm appeared. The circular-dichroism spectra of both the oxidized and reduced proteins were the same, consisting mainly of a negative trough at 220nm. 4. The smaller component had mol.wt. 66800 and contained four Fe atoms and four acid-labile sulphide groups in a molecule comprising two subunits each of mol.wt. 34600. All common amino acids except tryptophan were present, with a predominance of acidic residues. The apparent partial specific volume calculated from the amino acid analysis was 0.732, which was significantly higher than that obtained from density measurements (0.69); ultracentrifugal analysis gave s(0) (20,w)=4.8S and D(0) (20,w)=5.55x10(-7)cm(2)/s. The specific activities (nmol of product formed/min per mg of protein) were 1050 for H(2) evolution, 275 for N(2) reduction, 980 for acetylene reduction and 4350 for ATP hydrolysis. The protein was not cold-labile. The reduced protein showed electron-paramagnetic-resonance signals in the g=1.94 region. The Mössbauer spectrum of the reduced protein consisted of a doublet at 77 degrees K. The u.v. spectra of reduced and O(2)-inactivated proteins were identical, and inactivation by O(2) generally increased the absorbance in the visible region and resulted in a shoulder at 460nm. The circular-dichroism spectra exhibited a negative trough at 220nm and inactivation by O(2) decreased the depth of the trough. 5. The reduction of N(2) and acetylene, and H(2) evolution, were maximal at a 1:1 molar ratio of the Fe-containing protein to the Mo-Fe-containing protein; excess of the Mo-Fe-containing protein was inhibitory. All reductions were accompanied by H(2) evolution. The combined proteins had no ATP-independent hydrogenase activity.
Two novel, distinct truncated forms of apolipoprotein B (apo B) designated as apo B-90 and apo B-40 were found in five members of a kindred with hypobetalipoproteinemia. Sodium dodecyl sulfate gels and immunoblots of plasma or low density llpoproteln (LOL) (d=1.019 to 1.063 g/ml) of the affected members demonstrated the presence of one or both of the truncated apo B bands. Employing four monoclonal antl-LDL antibodies with defined regional specificities, we demonstrated that amlno terminal epttopes of the truncated apo Bs were Intact, but that 10% and 60%, respectively, of the carboxyl terminal regions were absent Tnrombln digestion of apo B-90 generated an abnormally small T2 fragment, confirming that approximately 550 amlno acids had been deleted from the carboxyl terminus of apo B-100. A polipoprotein B (apo B) is important in lipoprotein metabolism. Under normal conditions, human apo B is secreted in two forms, one with apparent A^=550 Kd (apo B-100) from liver in association with very low density lipoprotein (VLDL) and another with apparent M r =246 Kd (apo B-48) from intestine in association with chylomicrons. Hepatic VLDL are converted to intermediate density lipoprotein (IDL) and low density lipoprotein (LDL), which are removed from circulation via LDL receptormediated endocytosis, and apo B-100 serves as the ligand for lipoprotein recognition in this case.Familial hypobetalipoproteinemia (HBL), is characterized in the homozygous state by symptoms that resemble abetalipoproteinemia (ABL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.