Drug/metabolite ratios (MRs) are used as in vivo markers of enzyme activity. The ratios are potentially confounded by the renal clearance of the drug (urine-based MRs) or metabolite (plasma-based MRs). The authors have investigated the relative sensitivity of urinary MR of 3 in vivo probe substrates of CYP2D6 debrisoquine (DB), dextromethorphan (DM), and metoprolol (MP) to changes in urine pH. Three groups of healthy volunteers each comprising 12 individuals were given DB (10 mg), DM (25 mg), or MP (100 mg) on 3 occasions. In 1 study arm, urine was acidified by the oral intake of ammonium chloride; in another, it was alkalinized by intake of sodium bicarbonate; and in the third, urine pH was uncontrolled. Urinary MP/alpha-hydroxy-MP, DM/dextrorphan, and DB/4-hydroxy-DB ratios were calculated. The mean(geo) MR for DB was not significantly different in any of the study arms, whereas those for MP and DM were significantly different under acidified and alkalinized urine conditions compared to uncontrolled urine pH (P < .01) and were correlated with urine pH (P < .001). Without control of urine pH, in vivo estimates of CYP2D6 metabolic activity are likely to be less precise using DM or MP as probe substrates compared to DB. Although this is unlikely to cause any problem in distinguishing the large functional differences in CYP2D6 in poor metabolizer (PM) and extensive metabolizer (EM) phenotypes, this may contribute to difficulties in differentiating in vivo metabolic activity among allelic variants within the overall CYP2D6 EM phenotype using MP or DM. However, because DB is not available in many countries (eg, United States), alternative in vivo markers of CYP2D6 with low sensitivity to urine pH should be sought.
Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing alpha-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250 microM) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100 microM) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of alpha,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.