Differential equations are used to model problems that originate in disciplines such as physics, biology, chemistry, and engineering. In recent times, due to the abundance of data, there is an active search for data-driven methods to learn Differential equation models from data. However, many numerical methods often fall short. Advancements in neural networks and deep learning, have motivated a shift towards data-driven deep learning methods of learning differential equations from data. In this work, we propose a forward-Euler based neural network model and test its performance by learning ODEs such as the FitzHugh-Nagumo equations from data using different number of hidden layers and different neural network width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.