We have performed an extensive constant temperature Molecular Dynamics study of two-dimensional systems involving Janus dumbbells and spherical particles. Janus dumbbells have been modelled as two spheres, labeled 1 and 2, joined together via harmonic bonds. Sphere 1 of a selected Janus dumbbell attracts the spheres of the same kind on other Janus dumbbells, while the interactions between the pairs 1-1 and 1-2 were repulsive. On the other hand, the spherical particles are attracted by centers 2 and repelled by the centers 1 of Janus particles. We have shown that the structure of oriented phases that can be formed in the system depends on the bond length of Janus dumbbells and the ratio of the number of spherical particles to the number of Janus dumbbells in the system. The presence of spherical particles is necessary to develop oriented phases. For the assumed model, the formation of oriented phases in the system depends on the concentration of spherical particles. Equal numbers of Janus and spherical particles create optimal conditions for the formation of lamellar phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.