The cytochrome P450 enzyme CYP2C9 catalyses the metabolism of numerous therapeutic agents, including the anti-epileptic drug phenytoin. CYP2C9 is genetically polymorphic: two allelic variants are known, CYP2C9*2 and CYP2C9*3, differing from the wild-type CYP2C9*1 by a single point mutation. Both mutant alleles are associated with markedly impaired metabolic capacity for many CYP2C9 substrates compared to the wild-type, resulting in raised serum drug levels upon a given dose. Because this may be relevant in treatment with phenytoin, we studied the effect of CYP2C9 genotype on phenytoin dose requirement in a group of 60 epileptic patients on long-term phenytoin therapy. CYP2C9 genotyping was performed by polymerase chain reaction analysis, phenytoin serum concentrations were measured by high-performance liquid chromatography analysis and related to the maintenance doses. For patients carrying at least one mutant CYP2C9 allele (n = 17), the mean phenytoin dose required to achieve a therapeutic serum concentration was about 37% lower than the mean dose required by wild-type individuals (199 mg/day versus 314 mg/day; P < 0.01). A low maintenance dose (< 200 mg/day) sufficed for 47% of carriers, while 58% of normals required a high dose (> 300 mg/day) for an effective serum level. The results show that there is a strong association between CYP2C9 allelic variants and phenytoin dose requirement. Since phenytoin has a narrow therapeutic index and genotyping may be carried out rapidly and at low cost, dosage adjustment based on CYP2C9 genotype, especially at the induction of therapy, would be of value in order to lower the risk of concentration dependent drug intoxications in carriers.
In order to determine the effects of IGF-II overexpression on growth of mice, transgenic mice were produced carrying one of three different H-2Kb human IGF-II minigenes in which different non-coding exons (exon 5, truncated exon 5 or exon 6) preceded the coding exons 7, 8 and 9. These were spaced by truncated introns and for proper polyadenylation an SV40 polyadenylation signal was incorporated. The highest levels of IGF-II minigene mRNA expression were found in lines containing the truncated exon 5 construct (II5'). Those containing exon 6 (II6) had less expression and 5 constructs (II5) gave only moderate levels of mRNA expression. In general mRNA expression was highest in thymus and spleen, low in liver and kidney and absent in the brain. In addition, one II5' line showed expression in the brain. Serum IGF-II levels at 8 weeks of age were increased 7- to 8-fold in homozygous transgenic lines with construct II5' without brain expression and 2- to 3-fold in the one that showed expression in the brain; serum IGF-I levels were unchanged. Serum IGFs in the lines containing the constructs II5 and II6 were not different from those of the controls. In all cases body length and weight as well as the weight of several organs such as brain, liver, kidneys, heart and spleen when expressed as a function of age did not differ from controls. Only the thymus showed a significant increase in weight in the transgenics II5'. Inbreeding of 2 lines containing construct II5' with pituitary deficient Snell dwarf mice did not influence body length or weight despite increased serum IGF-II levels. Again the thymus showed a marked increase in growth. The biological activity of the IGF-II peptide was further demonstrated by increased serum IGF-binding protein-3 in the transgenic dwarf mice, as shown by Western ligand blotting. In summary, overexpression of IGF-II in transgenic normal and dwarf mice does not affect overall body growth, but causes increased growth of the thymus. This suggests a role for IGF-II in thymic development by paracrine/autocrine action.
Erythrocytes were separated by age using a combination of density centrifugation and counterflow centrifugation and tested for basal activity of the hexose monophosphate shunt (HMP‐shunt) as well as the methylene blue‐stimulated maximal capacity by measuring CO2 production. No significant differences were found in basal HMP‐shunt activity, but the maximal methylene blue‐stimulated activity of old erythrocytes reached only half of the activity of the total cell population. The maximal HMP‐shunt activity showed a significant correlation with hexokinase activity, but not with glucose‐6‐phosphate dehydrogenase activity in all but the youngest cells. The sensitivity to oxidative stress was tested by measuring the kinetics of pyruvate kinase isolated from erythrocytes incubated in presence and absence of methylene blue. Pyruvate kinase kinetics were affected more in the old cell population than in the total cell population: the K0.5 for phosphoenol‐pyruvate increased four times in the unseparated cells and eight times in old cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.