In this paper, the application of Rapid Prototyping in fabricating non-assembly robotic systems and mechanisms is presented. Using two Rapid Prototyping techniques, Stereolithography and Selective Laser Sintering, prototypes of mechanical mobile joints were fabricated. The designs of these component joints were then used to fabricate the articulated structure of experimental prototypes for two robotic systems: (1) a three-legged parallel manipulator, (2) a four degree-of-freedom finger of a five-fingered robotic hand. These complex multi-articulated, multi-link, multi-loop systems have been fabricated in one step, without requiring assembly while maintaining their desired mobility. The feasibility and usefulness of Rapid Prototyping as a method for the fabrication of these non-assembly type mechanisms and robotic systems is the focus of this work.
This paper describes the goals and current accomplishments of this research. The main thrust of this effort is to design artificial limbs that are lightweight, compact and dexterous, that mimic human anatomy and maintain a high lifting capability. The key to satisfying these objectives is the use of Shape Memory Alloy (SMA) artificial muscles as actuators. A general methodology to find the placement of SMA wires to achieve desired ranges of motion is presented. Three experimental prototypes, emulating human skeletal structures that are actuated by SMA artificial muscles are described in detail.
It is expected that upper extremity amputees will greatly benefit from the commercialization of the novel robot prosthetic devices that will be developed in this research. These lightweight prostheses with high lifting capabilities, force-reflective characteristics and multi-degree of freedom dexterity will tremendously improve the capabilities of amputees and therefore will attract their interest. In addition, our SMA actuated robotic devices can find other commercial applications. Of special interest to our team are two other commercial applications: space robotic systems and robot toys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.