Addition of glucose to Saccharomyces cerevisiae cells grown on a nonfermentable carbon source triggers a cyclic AMP (cAMP) signal, which induces a protein phosphorylation cascade. In a yeast strain lacking functional RAS] and RAS2 genes and containing a bcy mutation to suppress the lethality of RAS deficiency, the cAMP signal was absent. Addition of dinitrophenol, which stimulates in vivo cAMP synthesis by lowering intracellular pH, also did not enhance the cAMP level. A bcy control strain, with functional RAS genes present, showed cAMP responses similar to those of a wild-type strain. In disruption mutants containing either a functional RAS] gene or a functional RAS2 gene, the cAMP signal was not significantly different from the one in wild-type cells, indicating that RAS function cannot be a limiting factor for cAMP synthesis during induction of the signal. Compared with wild-type cells, the cAMP signal decreased in intensity with increasing temperature in a ras2 disruption mutant. When the mutant RAS2V'-l9, which carries the equivalent of the human H-rasVa~2 oncogene, was grown under conditions in which RAS] expression is repressed, the cAMP signal was absent. The oncogene product is known to be deficient in GTPase activity. However, the amino acid change at position 19 (or 12 in the corresponding human oncogene product) might also have other effects, such as abolishing receptor interaction. Such an additional effect probably provides a better explanation for the lack of signal transmission than the impaired GTPase activity. When the RAS2val-19 mutant was grown under conditions in which RAS] is expressed, the cAMP signal was present but significantly delayed compared with the signal in wild-type cells. This indicates that oncogenic RAS proteins inhibit normal functioning of wild-type RAS proteins in vivo and also that in spite of the presence of the RAS2va'-9 oncogene, adenyl cyclase is not maximally stimulated in vivo. Expression of only the RAS2Va'-l9 gene product also prevented most of the stimulation of cAMP synthesis by dinitrophenol, indicating that lowered intracellular pH does not act directly on adenyl cyclase but on a step earlier in the activation pathway of the enzyme. The results obtained with the control bcy strain, the RAS2va'-I9 strain under conditions in which RAS] is expressed, and with dinitrophenol show that the inability of the oncogene product to mediate the cAMP signal is not due to feedback inhibition by the high protein kinase activity in strains containing the RAS2Va-l9 oncogene. Hence, the present results show that the RAS proteins in S. cerevisiae are involved in the transmission of the glucose-induced cAMP signal and that the oncogenic RAS protein is unable to act as a signal transducer. The RAS proteins in S. cerevisiae apparently act similarly to the G. proteins of mammalian adenyl cyclase, but instead of being involved in hormone signal transmission, they function in a nutrient-induced signal transmission pathway. (23,31) and transient intracellular acidification (10,36,46) we...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.