Plant roots significantly affect microbial diversity in soil, but little is known on how genetically modified plants influence soil microbial communities. We conducted a 2-year field study to assess the effects of herbicide-tolerant genetically modified canola (oilseed rape, Brassica sp.) on microbial biodiversity in the rhizosphere. During the 1998 and 1999 field seasons, four genetically modified and four conventional canola varieties were grown at four different field locations across Saskatchewan, Canada. The rhizosphere and root interior microbial communities were characterized through fatty acid methyl ester analysis and community level physiological profiles. Principal component analysis indicated that the root interior and rhizosphere bacterial community associated with the genetically modified variety Quest (Brassica napus) was different from conventional varieties Excel (B. napus) and Fairview (Brassica rapa), based on both fatty acid composition and carbon substrate utilization. In addition, all root-associated microbial communities associated with genetically modified canola varieties had significantly higher levels of 10:02OH, 12:02OH, 12: 03OH, a15:0, 15:1g5c, cy17:0, 18:3g6,9,12c,19:0g8c and Sum in Feature 3, suggesting alterations in the composition of the microbial community associated with plants. This study indicates that the composition and functional diversity and the microbial community were influenced by plant variety. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.