Design and implementation of a Chaotic Artificial Bee Colony (ChABC) algorithm based Fractional Order Proportional Integral Derivative (FOPID) controller for Power Factor Correction (PFC) in Switched Mode Power Supply (SMPS) using DC-DC Zeta converter is proposed in this paper. The dc-dc zeta converter has the advantages of high efficiency over a wide range of input and output voltages, an enormous power factor, low line current harmonics, and can convert voltages both up and down. Operating the converter in discontinuous conduction mode (DCM) achieves power factor correction and simplifies the control circuit. This paper describes the design characteristics, operating principles, and controller design of the proposed converter. The design, analysis, modelling and advancement of the ChABC algorithm based FOPID controller in SMPS offers the better power quality and faster convergence of regulated output voltage. Simulation and experimental results are presented to verify power factor, % Total Harmonic Distortion (THD), output voltage regulation, stability, and robustness for various load, line, and reference voltages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.