Zinc oxide nanocomposites in the form of coatings and composite films with antitumor activity were obtained by deposition of ZnO nanofilms on surfaces of ethyl ether Sali- cylidene DL-tyrosine (S1) and ethyl ether Sali- cylidene DL-tyrosine Cu (II) chelate (S2) by magnetron sputtering of Zn target. Ethyl ether salicylidene DL-tyrosine, Cu (II) chelate of ethyl ether salicylidene DL-tyrosine reveal some anticancer properties. Their zinc oxide nano- composites were obtained in the form of coat- ings (S1 + ZnO, S2 + ZnO) and composite films presenting a mixture of polyvinyl alcohol (PVA) with S1, S2 (S1 + PVA + ZnO, S2 + PVA + ZnO), for the purpose of increasing anticancer activity. Considerable increase in antitumor activity re- veal ZnO nanocomposites with salicylidene amino acid chelates (as distinct from their ethers) in the form of S2 + ZnO (47%) and S2 + PVA + ZnO (48%) in comparison with S2 (20%). Structural, spectral properties of the salicylidene amino acids and their ZnO nanocomposites were studied
Thin films of Bi, Sb, solid solutions Bi 1-x Sb x , as well as multilayer structures Bi-Sb-Bi-Sb-from elementary sources were produced by pulsed laser deposition for optoelectronic applications. KBr crystals were used as substrates. The solid solutions Bi 1-x Sb x were obtained by co-evaporation of single targets of Bi and Sb. Structural investigations show that the performance of produced films depends on both the amount of material deposited per pulse of laser energy and the ratio of this amount for bismuth and antimony. Based on this the technological regimes of growth temperature and laser intensity ranges were determined in which single-crystalline growth of films with certain x is possible. Single-crystalline films of Bi 1x Sb x were obtained in the range of x (0.12-0.48), which corresponds to semiconductor state of this solution. The method of sequential deposition is used for fabrication of multilayer structures Bi/Sb with quantum-confined layers of bismuth. The growth regime with practically excluded interdiffusion of materials is found. Results of spectral investigations are shown to be in agreement with the theoretically predicted semimetal-to-semiconductor transition of bismuth as a result of quantum confinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.