Objective: Characterization of a novel human placental tissue-derived biologic, PTP-001, which is in development as a candidate therapeutic for the treatment of osteoarthritis symptoms and pathophysiology. Methods: Human placental tissues from healthy donors were prepared as a particulate formulation, PTP-001. PTP-001 extracts were assayed for the presence of disease-relevant biofactors which could have beneficial effects in treating osteoarthritis. PTP-001 eluates were tested in human chondrocyte cultures to determine effects on the production of a key collagen-degrading matrix metalloproteinase, MMP-13. PTP-001 eluates were also assessed for anti-inflammatory potential in human monocyte/macrophage cultures, as well as for growth-stimulating anabolic effects in human synoviocytes. The in vivo effects of PTP-001 on joint pain and histopathology were evaluated in a rat model of osteoarthritis induced surgically by destabilization of the medial meniscus. Results: PTP-001 was found to contain an array of beneficial growth factors, cytokines and anti-inflammatory molecules. PTP-001 eluates dose-dependently inhibited the production of chondrocyte MMP-13, and the secretion of proinflammatory cytokines from monocyte/macrophage cultures. PTP-001 eluates also promoted proliferation of cultured synovial cells. In a rat osteoarthritis model, PTP-001 significantly reduced pain responses throughout 6 weeks post-dosing. The magnitude and duration of pain reduction following a single intraarticular treatment with PTP-001 was comparable to that observed for animals treated with a corticosteroid (active control). For rats dosed twice with PTP-001, significant reductions in cartilage histopathology scores were observed. Conclusions: PTP-001 represents a promising biologic treatment for osteoarthritis, with a multi-modal mechanism of action that may contribute to symptom management and disease modification.
Objective This study was conducted to compare therapeutically relevant properties of platelet-rich plasma (PRP), a commonly used autologous intra-articular treatment for osteoarthritis (OA), with those of a novel placental tissue particulate, PTP-001, which is in development as a regulated biologic treatment for knee OA. Design Quantitative immunoassays were performed to determine the content of key growth/regulatory biofactors in PTP-001, and in leukocyte-rich (LR)-PRP or leukocyte-poor (LP)-PRP. An anti-inflammatory bioassay was used to evaluate the effects of each treatment on pro-inflammatory cytokine (tumor necrosis factor (TNF)-α) production in a macrophage cell culture system. Gene expression experiments were conducted using a co-culture system of human synoviocytes (pre-stimulated with interleukin (IL)-1β) and articular chondrocytes, with quantitative polymerase chain reaction analyses of the separate cellular compartments. Results The concentrations of several biofactors (e.g., basic fibroblast growth factor, tissue inhibitor of metalloproteases-3, interleukin-1 receptor antagonist) representative of diverse disease-relevant mechanisms of action were significantly higher for PTP-001 relative to LR-PRP or LP-PRP. PTP-001 and PRP preparations were able to reduce TNF-α production in macrophage cell cultures; however, greater variability was observed for PRP in comparison with PTP-001. In the chondrocyte/synoviocyte co-culture experiments, PTP-001 and LR-PRP (but not LP-PRP) significantly reduced chondrocyte MMP13 expression in cultures containing IL-1-pretreated synoviocytes. In addition, ADAMTS5 expression was reduced in the chondrocyte compartment following treatment with PTP-001 relative to PRP. Conclusion These findings support evidence of a potent, multifactorial mechanism of action for a consistently manufactured biologic (PTP-001), which may be of greater therapeutic benefit in comparison with more heterogeneous preparations of PRP which may be generated at the time of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.