Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator's strike. Using a novel device, the impulse chamber, zebrafish (Danio rerio) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (modeZ13-15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.
Abstract. Scyphomedusae undergo a predictable ontogenetic transition from a conserved, universal larval form to a diverse array of adult morphologies. This transition entails a change in bell morphology from a highly discontinuous ephyral form, with deep clefts separating eight discrete lappets, to a continuous solid umbrella-like adult form. We used a combination of kinematic, modeling, and flow visualization techniques to examine the function of the medusan bell throughout the developmental changes of the scyphomedusa Aurelia aurita. We found that flow around swimming ephyrae and their lappets was relatively viscous (1 Ͻ Re Ͻ 10) and, as a result, ephyral lappets were surrounded by thick, overlapping boundary layers that occluded flow through the gaps between lappets. As medusae grew, their fluid environment became increasingly influenced by inertial forces (10 Ͻ Re Ͻ 10,000) and, simultaneously, clefts between the lappets were replaced by organic tissue. Hence, although the bell undergoes a structural transition from discontinuous (lappets with gaps) to continuous (solid bell) surfaces during development, all developmental stages maintain functionally continuous paddling surfaces. This developmental pattern enables ephyrae to efficiently allocate tissue to bell diameter increase via lappet growth, while minimizing tissue allocation to inter-lappet spaces that maintain paddle function due to boundary layer overlap.
Locomotion and feeding in marine animals are intimately linked to the flow dynamics created by specialized body parts. This interaction is of particular importance during ontogeny, when changes in behaviour and scale challenge the organism with shifts in fluid regimes and altered functionality. Previous studies have indicated that Scyphozoan jellyfish ontogeny accommodates the changes in fluid dynamics associated with increasing body dimensions and velocities during development. However, in addition to scale and behaviour that-to a certain degreeunderlie the control of the animal, flow dynamics are also dependent on external factors such as temperature. Here, we show phenotypic plasticity in juvenile Aurelia aurita medusae, where morphogenesis is adapted to altered fluid regimes imposed by changes in ambient temperature. In particular, differential proportional growth was found to compensate for temperature-dependent changes in viscous effects, enabling the animal to use adhering water boundary layers as 'paddles'-and thus economize tissue-at low temperatures, while switching to tissue-dominated propulsion at higher temperatures where the boundary layer thickness is insufficient to serve for paddling. This effect was predicted by a model of animal -fluid interaction and confirmed empirically by flowfield visualization and assays of propulsion efficiency.
SUMMARYFish use the lateral line system to sense the water flow created by a predator's strike. Despite its potential importance to the survival of a diversity of species, it is unclear whether this ability becomes compromised when a fish swims. Therefore, the present study compared the behavioral responsiveness of swimming and motionless zebrafish (Danio rerio) larvae when exposed to the flow of a suction-feeding predator. This flow was generated with an impulse chamber, which is a device that we developed to generate a repeatable stimulus with a computer-controlled servo motor. Using high-speed video recordings, we found that about three-quarters (0.76, N121) of motionless larvae responded to the stimulus with an escape response. These larvae were 66% more likely to respond to flow directed perpendicular than flow running parallel to the body. Swimming larvae exhibited a 0.40 response probability and were therefore nearly half as likely to respond to flow as motionless larvae. However, the latency between stimulus and response was unaffected by swimming or the direction of flow. Therefore, swimming creates changes in the hydrodynamics or neurophysiology of a larval fish that diminish the probability, but not the speed, of their response to a flow stimulus. These findings demonstrate a sensory benefit to the intermittent swimming behavior observed among a broad diversity of fishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.