Hereditary dentin defects are divided into dentinogenesis imperfecta and dentin dysplasia. We identified a family segregating severe dentinogenesis imperfecta. The kindred spanned four generations and showed an autosomal-dominant pattern of inheritance. The proband was a child presenting with a severely affected primary dentition, with wide-open pulp chambers and multiple pulp exposures, resembling a DGI type III (DGI-III) pattern. We hypothesized that a mutation in the DSPP gene is responsible for this severe phenotype. Mutational analyses revealed a novel mutation (c.53T>A, p.V18D) near the intron-exon boundary in the third exon of the DSPP gene. We analyzed the effect of the mutation by means of an in vitro splicing assay, which revealed that the mutation did not affect pre-mRNA splicing. Further studies are needed for a better understanding of the nature of the disease and the development of an appropriate treatment strategy.
Mutations in a family with sequence similarity 83 member H (FAM83H) cause autosomal-dominant hypocalcification amelogenesis imperfecta (ADH CAI). All FAM83H ADHCAI-causing mutations terminate translation or shift the reading frame within the specific exon 5 segment that encodes from Ser(287) to Glu(694). Mutations near Glu(694) cause a milder, more localized phenotype. We identified disease-causing FAM83H mutations in two families with ADHCAI: family 1 (g.3115C>T, c.1993 C>T, p.Q665X) and family 2 (g.3151C>T, c.2029 C>T, p.Q677X). We also tested the hypothesis that truncation mutations alter the intracellular localization of FAM83H. Wild-type FAM83H and p.E694X mutant FAM83H fused to green fluorescent protein (GFP) localized in the cytoplasm of HEK293T cells, but the mutant FAM83H proteins (p.R325X, p.W460X, and p.Q677X) fused to GFP localized mainly in the nucleus with slight expression in the cytoplasm. We conclude that nuclear targeting of the truncated FAM83H protein contributes to the severe, generalized enamel phenotype.
Mutational analysis revealed a novel mutation in FAM83H gene. Hardness of dentine was not affected by the mutation, whilst the enamel was extremely soft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.