We study numerically the problem of four bodies, three of which are finite, moving in circles around their center of mass fixed at the origin of the coordinate system, according to the solution of Lagrange where they are always at the vertices of an equilateral triangle, while the fourth is infinitesimal. The fourth body does not affect the motion of the three bodies (primaries). The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves as well as the positions of the equilibrium points are given. The existence and the number of collinear and noncollinear equilibrium points of the problem depend on the mass parameters of the primaries. For three unequal masses, collinear equilibrium solutions do not exist. Critical masses associated with the existence and the number of equilibrium points, are given. The stability of the relative equilibrium solutions in all cases is also studied. The regions of the basins of attraction for the equilibrium points of the present dynamical model for some values of the mass parameters are illustrated.
Abstract.The use of the Cauchy theorem (instead of the Cauchy formula) in complex analysis together with numerical integration rules is proposed for the computation of analytic functions and their derivatives inside a closed contour from boundary data for the analytic function only. This approach permits a dramatical increase of the accuracy of the numerical results for points near the contour. Several theoretical results about this method are proved. Related numerical results are also displayed. The present method together with the trapezoidal quadrature rule on a circular contour is investigated from a theoretical point of view (including error bounds and corresponding asymptotic estimates), compared with the numerically competitive Lyness-Delves method and rederived by using the Theotokoglou results on the error term. Generalizations for the present method are suggested in brief.
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m 1 , m 2 and m 3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m 3 , of critical periodic orbits as well as horizontal and verticalcritical periodic orbits of each family and in any case of the mass parameters are also calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.