Biological oxidation of 2,4-diamino-6-substituted pyrimidines have been studied using hepatic microsomes from various mammalian species. The nature of the enzyme(s) involved in the oxidation has been elucidated using various enzyme inhibitors and inducing agents. The 3-N-oxides were formed with 6-piperidino-, 6-diethylamino-, 6-methyl-, and 6-chloro-substituted 2,4-diaminopyrimidines: no evidence of 1-N-oxide formation was obtained. With the 6-hydroxy-, 6-amino-, and unsubstituted 2,4-diaminopyrimidines and melamine, no N-oxidative metabolite was detected. The differences in N-oxide formation was discussed in terms of the effect of substituents on tautomerism and electron distribution. The N-oxygenation was mediated via a cytochrome P450 dependent system.
It was previously found that 9-benzyladenine (BA) was extensively N1-oxidised by animal hepatic microsomes; further, mononitrosubstitution in the phenyl moiety of BA significantly modified the N1-oxidation rates of the corresponding substrates. In order to establish whether the electronic nature or a steric effect of the substituents in the phenyl moiety is the reason for the modification of N1-oxidation rate, the metabolism of some 2'-substituted 9-benzyladenines, i.e. 9-(2-chlorobenzyl)adenine (2CBA), 9-(2-methyl-benzyl)adenine (2MBA) and 9-(2-methoxybenzyl)adenine (2MOBA), by hamster hepatic microsomes was studied. It was found that the N1-oxide was still the major metabolite for 2CBA. However, only minor amounts of N1-oxides were formed during microsomal incubation with 2MBA and 2MOBA. On the other hand, in spite of the higher N1-oxidation rate of 2CBA, its total biotransformation rate was slightly lower than the other two substrates. Like other 9-aralkyladenines previously studied, dealkylation occurred for all three substrates. It was also found that another two metabolites formed in significant amounts in the incubates from both 2MBA and 2MOBA. These metabolites were not fully characterised and their structures unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.