Systematic variation of microscale structures has been employed to create a rough superhydrophobic surface with a contact angle gradient. Droplets are propelled down these gradients, overcoming contact angle hysteresis using energy supplied by mechanical vibration. The rough hydrophobic surfaces have been designed to maintain air traps beneath the droplet by stabilizing its Fakir state. Dimensions and spacing of the microfabricated pillars in silicon control the solid-liquid contact area and are varied to create a gradient in the apparent contact angle. This work introduces the solid-liquid contact area fraction as a new control variable in any scheme of manipulating droplets, presenting theory, fabricated structures, and experimental results that validate the approach.
The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.
Cells regulate active transport of intracellular cargo using motor proteins. Recent nanobiotechnology efforts aim to adapt motor proteins to power the movement and assembly of synthetic materials. A motor-protein-based nanoscale transport system (molecular shuttle) requires that the motion of the shuttles be guided along tracks. This study investigates the principles by which microtubules, serving as shuttle units, are guided along micrometer-scale kinesin-coated chemical and topographical tracks, where the efficiency of guidance is determined by events at the track boundary. Thus, we measure the probability of guiding as microtubules reach the track boundary of (1) a chemical edge between kinesin-coated and kinesin-free surfaces, (2) a topography-only wall coated completely with kinesin, and (3) a kinesin-free wall next to a kinesin-coated bottom surface (topography and chemistry combined). We present a guiding mechanism for each surface type that takes into account the physical properties of microtubule filaments and the surface properties (geometry, chemistry), and elucidate the contributions of surface topography and chemistry. Our experimental and theoretical results show that track edges that combine both topography and chemistry guide microtubules most frequently (approximately 90% of all events). By applying the principles of microtubule guidance by microfabricated surfaces, one may design and build motor-protein-powered devices optimized for transport.
Wearable electronics is a rapidly growing field that recently started to introduce successful commercial products into the consumer electronics market. Employment of biopotential signals in wearable systems as either biofeedbacks or control commands are expected to revolutionize many technologies including point of care health monitoring systems, rehabilitation devices, human–computer/machine interfaces (HCI/HMIs), and brain–computer interfaces (BCIs). Since electrodes are regarded as a decisive part of such products, they have been studied for almost a decade now, resulting in the emergence of textile electrodes. This study presents a systematic review of wearable textile electrodes in physiological signal monitoring, with discussions on the manufacturing of conductive textiles, metrics to assess their performance as electrodes, and an investigation of their application in the acquisition of critical biopotential signals for routine monitoring, assessment, and exploitation of cardiac (electrocardiography, ECG), neural (electroencephalography, EEG), muscular (electromyography, EMG), and ocular (electrooculography, EOG) functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.