In this paper, we extend hidden Markov modeling to speaker-independent phone recognition. Using multiple codebooks of various LPC parameters and discrete HMMs, we obtain a speakerindependent phone recognition accuracy of 58.8% to 73.8% on the TIMTT database, depending on the type of acoustic and language models used. In comparison, the performance of expert spectrogram readers is only 69% without use of higher level knowledge. We also introduce the co-occurrence smoothing algorithm which enables accurate recognition even with very limited training data. Since our results were evaluated on a standard database, they can be used as benchmarks to evaluate future systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.