We use neutron resonance spin echo and Larmor diffraction to study the effect of uniaxial pressure on the tetragonal-to-orthorhombic structural (Ts) and antiferromagnetic (AF) phase transitions in iron pnictides BaFe2−xNixAs2 (x = 0, 0.03, 0.12), SrFe1.97Ni0.03As2, and BaFe2(As0.7P0.3)2. In antiferromagnetically ordered BaFe2−xNixAs2 and SrFe1.97Ni0.03As2 with TN and Ts (TN ≤ Ts), a uniaxial pressure necessary to detwin the sample also increases TN , smears out the structural transition, and induces an orthorhombic lattice distortion at all temperatures. By comparing temperature and doping dependence of the pressure induced lattice parameter changes with the elastoresistance and nematic susceptibility obtained from transport and ultrasonic measurements, we conclude that the in-plane resistivity anisotropy found in the paramagnetic state of electron underdoped iron pnictides depends sensitively on the nature of the magnetic phase transition and a strong coupling between the uniaxial pressure induced lattice distortion and electronic nematic susceptibility.
Homogeneous thick film (∼0.10 mm) of high dielectric K0.05Ti0.02Ni0.93O; abbreviated as KTNO/polyvinylidene fluoride (PVDF) composite has been prepared by hot-molding technique. The frequency and temperature dependent dielectric behavior of this composite has been studied by varying the KTNO volume fraction (fKTNO). Near the percolation threshold (fKTNO=0.40), a large enhancement of effective dielectric permittivity (εeff∼400 which is 40 times higher than that of pure PVDF) with low loss (∼0.20 at 1 kHz) is observed. The experimental εeff data have been fitted with different theoretical models and found to follow percolation theory successfully. Such a high εeff and low loss flexible dielectric material appears to be suitable for technological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.