Myorod, a new protein of molluscan smooth muscles, is localized on the surface of paramyosin core of thick filaments together with myosin [Shelud'ko et al. (1999) Comp Biochem Physiol, 122, 277]. This protein is an alternatively spliced product of the myosin heavy chain gene. It contains the C-terminal rod part of myosin and a unique N-terminal domain [Yamada et al. (2000) J Mol Biol, 295, 169]. In the present study, the methods of myorod and myorod-free myosin preparation are developed and some properties of myorod are compared with those of myosin and myosin rod. We found that, in spite of the identity of filament-forming domains, the properties of polymeric myorod are clearly distinct from those of myosin and myosin rod. Myorod is much more soluble at intermediate ionic strength. The critical monomer concentration for polymerization of myorod is many times higher. The size of polymer particles of myorod is considerably smaller than that of myosin and myosin rod. The pure polymeric myorod forms a low turbid and unexpectedly high viscous suspension. The low-shear intrinsic viscosity of myorod is an order of magnitude higher than that of myosin or myosin rod and is close to that of F-actin. A trace admixture of myosin in myorod preparations or a small addition of myosin (0.2-1.0%) to myorod drastically alters the myorod polymerization. The suspensions of polymeric myorod nucleated by myosin have a high turbidity and low viscosity and consist of large particles. As judged from the changes in particle size distribution during polymerization, these particles are formed by successive dimerization steps. Electron micrographs show that the particles are typically spindle-shaped filaments in contrast to polymers of pure myorod which forms a network-like structure consisting of small particles. Possible participation of myorod in the catch-contraction of molluscan smooth muscles is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.