Data mining has become an indispensable technology for businesses and researchers in many fields. Discovering frequent itemsets is a key problem in important data mining applications. Typical association algorithms for solving this problem operate in a bottom-up, top-down and breadth-first search direction. The computation starts from frequent 1-itemsets (the minimum length frequent itemsets) and continues until all maximal (length) frequent itemsets are found. Algorithms perform well when all maximal frequent itemsets are short. However, performance drastically decreases when some of the maximal frequent itemsets are relatively long. This paper focuses on finding Maximum Frequent Set with the implementation of the APRIORI and the Dynamic Itemset Counting Algorithm (DIC) and a comparative study with Pincer Search Algorithm to select the fast algorithm for discovering the Maximum Frequent Set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.