We review the current knowledge and understanding of the interstellar medium of our galaxy. We first present each of the three basic constituents -ordinary matter, cosmic rays, and magnetic fields -of the interstellar medium, laying emphasis on their physical and chemical properties inferred from a broad range of observations. We then position the different interstellar constituents, both with respect to each other and with respect to stars, within the general galactic ecosystem.
We review the present observational knowledge on the spatial distribution and the physical state of the different (molecular, atomic and ionized) components of the interstellar gas in the innermost 3 kpc of our Galaxy -a region which we refer to as the interstellar Galactic bulge, to distinguish it from its stellar counterpart. We try to interpret the observations in the framework of recent dynamical models of interstellar gas flows in the gravitational potential of a barred galaxy. Finally, relying on both the relevant observations and their theoretical interpretation, we propose a model for the space-averaged density of each component of the interstellar gas in the interstellar Galactic bulge.
The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990's with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000's, the SPI instrument aboard ESA's INTEGRAL γ-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather "exotic" ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (∼MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.