Abstract-Over the past several years, there has been a renewed interest in complex orthogonal designs for their application in space-time block coding. Motivated by the success of this application, this paper generalizes the definition of complex orthogonal designs by introducing orthogonal designs over the quaternion domain. This paper builds a theory of these novel quaternion orthogonal designs, offers examples, and provides several construction techniques. These theoretical results, along with the results of preliminary simulations, lay the foundation for developing applications of these designs as orthogonal space-time-polarization block codes.
Jacket transforms are a class of transforms which are simple to calculate, easily inverted and are size-flexible. Previously reported jacket transforms were generalizations of the well-known Walsh-Hadamard transform (WHT) and the center-weighted Hadamard transform (CWHT). In this paper we present a new class of jacket transform not derived from either the WHT or the CWHT. This class of transform can be applied to any even length vector, and is applicable to finite fields and is useful for constructing error control codes. Abstract-Jacket transforms are a class of transforms which are simple to calculate, easily inverted and are size-flexible. Previously reported jacket transforms were generalizations of the well-known Walsh-Hadamard transform (WHT) and the center-weighted Hadamard transform (CWHT). In this paper we present a new class of jacket transform not derived from either the WHT or the CWHT. This class of transform can be applied to any even length vector, and is applicable to finite fields and is useful for constructing error control codes. Disciplines Physical Sciences and Mathematics
Jacket transforms are a class of transforms which are simple to calculate, easily inverted and are size-flexible. Previously reported jacket transforms were generalizations of the well-known Walsh-Hadamard transform (WHT) and the center-weighted Hadamard transform (CWHT). In this paper we present a new class of jacket transform not derived from either the WHT or the CWHT. This class of transform can be applied to any even length vector, and is applicable to finite fields and is useful for constructing error control codes. Abstract-Jacket transforms are a class of transforms which are simple to calculate, easily inverted and are size-flexible. Previously reported jacket transforms were generalizations of the well-known Walsh-Hadamard transform (WHT) and the center-weighted Hadamard transform (CWHT). In this paper we present a new class of jacket transform not derived from either the WHT or the CWHT. This class of transform can be applied to any even length vector, and is applicable to finite fields and is useful for constructing error control codes. Disciplines Physical Sciences and Mathematics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.