The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-b phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains $14 m 3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB 6 ) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB 6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J Â B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M 2 A ¼ ðv=v A Þ 2 > 1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action. V C 2014 AIP Publishing LLC.
The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user
facility designed to study a range of astrophysically relevant plasma processes
as well as novel geometries that mimic astrophysical systems. A multi-cusp
magnetic bucket constructed from strong samarium cobalt permanent magnets now
confines a 10 m$^3$, fully ionized, magnetic-field free plasma in a spherical
geometry. Plasma parameters of $ T_{e}\approx5$ to $20$ eV and
$n_{e}\approx10^{11}$ to $5\times10^{12}$ cm$^{-3}$ provide an ideal testbed
for a range of astrophysical experiments including self-exciting dynamos,
collisionless magnetic reconnection, jet stability, stellar winds, and more.
This article describes the capabilities of WiPAL along with several
experiments, in both operating and planning stages, that illustrate the range
of possibilities for future users.Comment: 21 pages, 12 figures, 2 table
The spontaneous formation of magnetic islands is observed in driven, antiparallel magnetic reconnection on the Terrestrial Reconnection Experiment. We here provide direct experimental evidence that the plasmoid instability is active at the electron scale inside the ion diffusion region in a low collisional regime. The experiments show the island formation occurs at a smaller system size than predicted by extended magnetohydrodynamics or fully collisionless simulations. This more effective seeding of magnetic islands emphasizes their importance to reconnection in naturally occurring 3D plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.