Anion conformation of a low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide (EMI+FSI-) has been studied by Raman spectra and theoretical DFT calculations. Three strong Raman bands were found at 293, 328, and 360 cm(-1), which are ascribed to the FSI- ion. These Raman bands show significant temperature dependence, implying that two FSI- conformers coexist in equilibrium. This is supported by theoretical calculations that the FSI- ion is present as either C2 (trans) or C1 (cis) conformer; the former gives the global minimum, and the latter has a higher SCF energy of about 4 kJ mol(-1). Full geometry optimizations followed by normal frequency analyses show that the observed bands at 293, 328, and 360 cm(-1) are ascribed to the C2 conformer. The corresponding vibrations at 305, 320, and 353 cm(-1) were extracted according to deconvolution of the observed Raman bands in the range280-400 cm(-1 )and are ascribed to the C1 conformer. The enthalpy DeltaH degrees of conformational change from C2 to C1 was experimentally evaluated to be ca. 4.5 kJ mol(-1), which is in good agreement with the predicted value by theoretical calculations. The bis(trifluoromethanesulfonyl) imide anion (TFSI-) shows a conformational equilibrium between C1 and C2 analogues (DeltaH degrees = 3.5 kJ mol(-1)). However, the profile of the potential energy surface of the conformational change for FSI- (the F-S-N-S dihedral angle) is significantly different from that for TFSI- (the C-S-N-S dihedral angle).
Sufficient progress towards redefining the International System of Units (SI) in terms of exact values of fundamental constants has been achieved. Exact values of the Planck constant h, elementary charge e, Boltzmann constant k, and Avogadro constant N A from the CODATA 2017 Special Adjustment of the Fundamental Constants are presented here. These values are recommended to the 26th General Conference on Weights and Measures to form the foundation of the revised SI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.