We present distributions of two molecular clouds having velocities of 2 and 14 km s −1 toward RCW 38, the youngest super star cluster in the Milky Way, in the 12 CO J = 1-0 and 3-2 and 13 CO J = 1-0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3-2 emission to the J = 1-0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ∼20 O stars that are localized within ∼0.5 pc of the cluster center in the 2 km s −1 cloud. We suggest that the collision is currently continuing toward part of the 2 km s −1 cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud-cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new 12 CO(J = 3-2) and 12 CO(J = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at V LSR ∼245 km s −1 towards the southeast of the SNR using ASTE 12 CO(J = 3-2) data at an angular resolution of ∼25 ′′ (∼6 pc in the LMC). Using the ALMA 12 CO(J = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of ∼1.8 ′′ (∼0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of ∼ 5 km s −1 . The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.
N132D is the brightest gamma-ray supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out 12CO(J = 1–0, 3–2) observations toward the SNR using the Atacama Large Millimeter/submillimeter Array (ALMA) and Atacama Submillimeter Telescope Experiment. We find diffuse CO emission not only at the southern edge of the SNR as previously known, but also inside the X-ray shell. We spatially resolved nine molecular clouds using ALMA with an angular resolution of 5″, corresponding to a spatial resolution of ∼1 pc at the distance of the LMC. Typical cloud sizes and masses are ∼2.0 pc and ∼100 M ⊙, respectively. High intensity ratios of CO J = 3–2/1–0 > 1.5 are seen toward the molecular clouds, indicating that shock heating has occurred. Spatially resolved X-ray spectroscopy reveals that thermal X-rays in the center of N132D are produced not only behind a molecular cloud but also in front of it. Considering the absence of a thermal component associated with the forward shock toward one molecular cloud located along the line of sight to the center of the remnant, this suggests that this particular cloud is engulfed by shock waves and is positioned on the near side of the remnant. If the hadronic process is the dominant contributor to the gamma-ray emission, the shock-engulfed clouds play a role as targets for cosmic rays. We estimate the total energy of cosmic-ray protons accelerated in N132D to be ∼0.5–3.8 × 1049 erg as a conservative lower limit, which is similar to that observed in Galactic gamma-ray SNRs.
We investigate the effects of Supergiant Shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. 12 CO (J=3-2, 1-0) and 13 CO(J=1-0) observations with the ASTE and Mopra telescopes have been carried out towards these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H 2 )) of the clumps are distributed from low to high density (10 3 -10 5 cm −3 ) and their kinetic temperatures (T kin ) are typically high (greater than 50 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of Hα, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density H I envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H 2 ) and T kin , which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.