The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna groundspace radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of formation of stars and planetary systems in our and other galaxies, interplanetary and interstellar plasma, and the gravitational field of the Earth. The results of ground-based and inflight tests of the space radio telescope carried out in both autonomous and ground-space interferometric regimes are reported. The derived characteristics are in agreement with the main requirements of the project. The astrophysical science program has begun.
We present an approach to testing the gravitational redshift effect using the RadioAstron satellite. The experiment is based on a modification of the Gravity Probe A scheme of nonrelativistic Doppler compensation and benefits from the highly eccentric orbit and ultra-stable atomic hydrogen maser frequency standard of the RadioAstron satellite. Using the presented techniques we expect to reach an accuracy of the gravitational redshift test of order 10 −5 , a magnitude better than that of Gravity Probe A. Data processing is ongoing, our preliminary results agree with the validity of the Einstein Equivalence Principle.
We present the design, commissioning, and initial results of the Green Bank Earth Station (GBES), a RadioAstron data downlink station located at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The GBES uses the modernised and refurbished NRAO 140ft telescope. Antenna optics were refurbished with new motors and drives fitted to the secondary mirror positioning system, and the deformable subreflector was refurbished with a new digital controller and new actuators. A new monitor and control system was developed for the 140ft and is based on that of the Green Bank Telescope (GBT), allowing satellite tracking via a simple scheduling block. Tools were developed to automate antenna pointing during tracking. Data from the antenna control systems and logs are retained and delivered with the science and telemetry data for processing at the Astro Space Center (ASC) of the Lebedev Physical Institute (LPI) of the Russian Academy of Sciences and the mission control centre, Lavochkin Association. Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/13/2014 Terms of Use: http://spiedl.org/terms Proc. of SPIE Vol. 9145 91450B-2 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/13/2014 Terms of Use: http://spiedl.org/terms
The subject of study in the article is the algorithms for radio monitoring of the Earth in a wide field of view from aerospace transport. The goal is to design a structural diagram of a radio complex that can operate simultaneously in two modes: modified synthetic aperture (SAR) and aperture synthesis (ASR), in accordance with algorithms synthesized by the maximum likelihood method. The modified SAR mode allows obtaining high-resolution radio images in the observation angle range ±(20°...50°) from the direction to the nadir. A method of combining a modified SAR algorithm is used, which differs from the classical imaging algorithm by the possibility of obtaining a higher spatial resolution, the payment for this is the complication of the signal processing algorithm associated with the implementation of decorrelating filters that expand the spectrum of received signals in each receiving path, and the ASR mode, which allows imaging using passive or active radar principles. The passive ASR mode provides for the imaging in the observation angle range of ±20° from the nadir based on the results of processing signals of its own broadband radio-thermal radiation, and the active mode – in the same observation angle range, but using the broadband noise signal of the backlight. An important result in the formation of a radio image in the specified viewing area when using the active mode of the ASR is that the images are close in physical content, namely, proportional to the specific effective reflection surface of the underlying surface. In addition, a distinctive feature of the synthesized algorithms is the use of wideband probing signals and, accordingly, the same input paths of receivers, which makes it possible to increase the signal-to-noise ratio of the output effect. Conclusions. The scientific novelty of the results obtained is as follows: a structural diagram of the radio complex was developed on the basis of algorithms synthesized by the maximum likelihood method. For the formation of a radio image in the radio complex, a combination of SAR and ASR (with two modes of operation) is implemented. This implementation is important, since it allows obtaining high-resolution images in the observation angle range of ±50° from the direction to the nadir. It is advisable to place the complex on airplanes, helicopters and spacecraft (preferably those that move in low orbits).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.