In the present paper, a method of analysis for calculating the pressure intensity corresponding to a given settlement for eccentrically and obliquely loaded square and rectangular footings resting on reinforced soil foundation has been presented. The process has been simplified by presenting non-dimensional charts for the various terms used in the analysis, which can be directly used by practicing engineers. An approximate method has been suggested to find out the ultimate bearing capacity of such footings on reinforced soil. The results have been validated with the model test results. The procedure has been made clear by giving an illustrative example.
The case of a rigid wall with inclined back face retaining reinforced cohesivefrictional backfill subjected to uniformly distributed surcharge load has been analyzed using limit equilibrium approach. The analysis considers the stability of an element of the failure wedge, which is assumed to develop in the reinforced earth mass adjoining the back face of wall. The non-dimensional charts have been developed for computing the lateral earth pressure on wall and the height of its point of application above the base of wall. The theoretical findings have been verified by model tests on a rigid wall retaining a dry cohesive-frictional soil reinforced by geogrid strips. Experimental results are in good agreement with the theoretical predictions. A design example has been included to illustrate the design procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.