The mutants of novel coronavirus (COVID-19 or SARS-Cov-2) are spreading with different variants across the globe, affecting human health and the economy. Rapid detection and providing timely treatment for the COVID-19 infected is the greater challenge. For fast and cost-effective detection, artificial intelligence (AI) can perform a key role in enhancing chest X-ray images and classifying them as infected/non-infected. However, AI needs huge datasets to train and detect the COVID-19 infection, which may impact the overall system speed. Therefore, Deep Neural Network (DNN) is preferred over standard AI models to speed up the classification with a set of features from the datasets. Further, to have accurate feature extraction, an algorithm that combines Zernike Moment Feature (ZMF) and Gray Level Co-occurrence Matrix Feature (GF) is proposed and implemented. The proposed algorithm uses 36 Zernike Moment features with variance and contrast textures. This helps to detect the COVID-19 infection accurately. Finally, the Region Blocking (RB) approach with an optimum sub-image size (32 × 32) is employed to improve the processing speed up to 2.6 times per image. The performance of this implementation presents an accuracy (A) of 93.4%, sensitivity (Se) of 72.4%, specificity (Sp) of 95%, precision (Pr) of 74.9% and F1-score (F1) of 72.3%. These metrics illustrate that the proposed model can identify the COVID-19 infection with a lesser dataset and improved accuracy up to 1.3 times than state-of-the-art existing models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.