Residual stress is an important parameter in the evaluation of the performance of a cold rolling spline surface. However, research on cold rolling spline is rare. To improve the surface property of a spline, an involute spline is selected as the object of this study. The contour method for determining cold roll-beating residual stress involves measuring the force spatial distribution, performing a statistical analysis of the experimental results, establishing the parameters for the tooth profile for different positions (dedendum, pitch, and addendum) of residual stress, and determining the effect of pressure on the relationship between stress and the depth of the cold roll-beating. A response surface method is used to establish the spline tooth profile of the dedendum, pitch, and addendum of the residual stress and different depths of the stress layer to obtain the parameters of a multiple regression model and perform a comparative analysis of the experimental and prediction results. Research indicates that the prediction results have high reliability. The establishment of this model has important guiding significance to control the residual stress in the cold roll-beating forming process, optimize the cold roll-beating processing parameters, and improve the surface properties of cold rolling spline.
To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.